Technical Future

CO2 Angiography procedures in Endovascular Aortic Repair

Mauro Gargiulo

Vascular Surgery University of Bologna - DIMES University Hospital Policlinico S.Orsola Bologna, Italy *mauro.gargiulo2@unibo.it*

Technical Future

CO2 Angiography procedures in Endovascular Aortic Repair

Disclosure

Speaker name: Prof Mauro Gargiulo

I have the following potential conflicts of interest to report:

Consulting

Employment in industry

Stockholder of a healthcare company

Owner of a healthcare company

X Principal Invesigator European Registry EVAR and CO2 Angiography

I do not have any potential conflict of interest

CO2 Angiography in Endovascular Aortic Repair

Agenda

- EVAR and renal function
- CO2 Angiography
- Experience of Vascular Surgery-University of Bologna Italy about Endovascular Aortic Repair with CO2 Angiography
 - EVAR
 - F/BEVAR

CO2 Angiography in Endovascular Aortic Repair

Agenda

- EVAR and renal function
- CO2 Angiography
- Experience of Vascular Surgery-University of Bologna Italy about Endovascular Aortic Repair with CO2 Angiography
 - EVAR
 - F/BEVAR

Results of standard suprarenal fixation endografts for abdominal aortic aneurysms with neck length ≤ 10 mm in high-risk patients unfit for open repair and fenestrated endograft

Enrico Gallitto, MD, Mauro Gargiulo, MD, Antonio Freyrie, MD, Claudio Bianchini Massoni, MD, Rodolfo Pini, MD, Chiara Mascoli, MD, Gianluca Faggioli, MD, and Andrea Stella, MD, Bologna, Italy

J Vasc Surg 2016

	No.	%
Cardiovascular risks factors and comorbiditie	s	
Hypertension	58	97
Smoking	16	27
Hypercholesterolemia	31	52
CÂD	29	48
COPD	42	70
CVD	17	28
Diabetes	16	27
Obesity	20	33
MOD	2	15
CRF	18	30
Reasons for FEVAR incligionity		
AAA maximum diameter >65 mm	26	43
Symptomatic AAA	4	7
AAA growth $>5 \text{ mm}/6 \text{ months}$	15	25
Proximal neck angles ≥60 degrees	19	32
Renal arteries unfit for FEVAR	5	8

CAD, Coronary artery disease; COPD, chronic obstructive pulmonary disease; CRF, chronic renal failure; CVD, cerebrovascular disease; PAOD, peripheral arterial obstructive disease.

Results of standard suprarenal fixation endografts for abdominal aortic aneurysms with neck length ≤ 10 mm in high-risk patients unfit for open repair and fenestrated endograft

Enrico Gallitto, MD, Mauro Gargiulo, MD, Antonio Freyrie, MD, Claudio Bianchini Massoni, MD, Rodolfo Pini, MD, Chiara Mascoli, MD, Gianluca Faggioli, MD, and Andrea Stella, MD, Bologna, Italy

	No.	%	Mean	Range
Main body oversize, %	_	_	18	10-30
Proximal cuff placement	4	7	_	_
Iliac leg stenting	11	18		
Contrast medium, mL	_	—	170	100-410
Fluoroscopy time, minutes	—	—	23	13-80
Procedure time, minutes	_	_	169	95-420
Intensive unit care, patients	13	22	_	_
Hospitalization, days	_	—	4.8	3-13

J Vasc Surg 2016

A systematic review & meta-analysis indicates **underreporting renal dysfunction** following EVAR

Karthikesalingam Aet al Kidney Interventional Advance, 2015

I-year renal function deterioration: 18%

• To discuss *Measures that should be implemented* to mitigate or minimize this effect on renal function

CO2 Angiography in Endovascular Aortic Repair

Agenda

- EVAR and renal function
- CO2 Angiography
- Experience of Vascular Surgery-University of Bologna Italy about Endovascular Aortic Repair with CO2 Angiography
 - EVAR
 - F/BEVAR

Carbon dioxide (CO2)

- ✓ Several studies have proposed the use of the carbon dioxide (CO2) as an alternative contrast media for EVAR
- Non-nephrotoxic, non-allergenic gas

CO2 Angiography in Endovascular Aortic Repair

N	Author	Year	Journal	Title
1	Chao A et al	2007	J Vasc Surg	<i>Carbon dioxide</i> digital subtraction angiography-assisted endovascular aortic aneurysm repair in the azotemic patient .
2	Criado E et al	2008	J Vasc Surg	Catheter-less angiography for endovascular aortic aneurysm repair: a new application of carbon dioxide as a contrast agent.
3	Criado E et al	2012	J Vasc Surg	Endovascular aortic aneurysm repair with carbon dioxide- guided angiography in patients with renal insufficiency.
4	Huang SG et al	2013	Ann Vasc Surg	A prospective study of carbon dioxide digital subtraction versus standard contrast arteriography in the detection of endoleaks in endovascular abdominal aortic aneurysm repairs.
5	Sueyoshi E et al	2015	J Vasc Surg	Carbon dioxide digital subtraction angiography as an option for detection of endoleaks in endovascular abdominal aortic aneurysm repair procedure.
6	De Almeida Mendes C et al	2017	Ann Vasc Surg	<i>Carbon Dioxide</i> as Contrast Medium to Guide Endovascular Aortic Aneurysm Repair.
7	De Angelis C et al	2017	Int J Cardiovasc Imaging.	Carbon dioxide (CO2) angiography as an option for endovascular abdominal aortic aneurysm repair (EVAR) in patients with chronic kidney disease (CKD).

CO2 Angiography in Endovascular Aortic Repair

N	Author	Year	Journal	Title	
1	Chao A et al	2007	J Vasc Surg	<i>Carbon dioxide</i> digital subtraction angiog endovascular aortic aneurysm repair in the a	graphy-assisted zotemic patient
2	^{Cri} ✓ Manua	al inject	ion	Catheter-less angiography for endovascular of	ortic aneurysm as a contrast
3	Cr 🗸 Not op	otimal c	ontrol of the ga	s output	rbon dioxide- Ficiency.
4	Hu The us been st	e of (tanda	CO ₂ in EV	AR procedure has not	d subtraction detection of ic aneurysm
5	Sueyoshi E et al	2015	J Vasc Surg	<i>Carbon atoxide</i> algual subtraction anglograp for detection of endoleaks in endovascular al aneurysm repair procedure.	ny as an option odominal aortic
6	De Almeida Mendes C et al	2017	Ann Vasc Surg	<i>Carbon Dioxide</i> as Contrast Medium to Guid Aortic Aneurysm Repair.	e Endovascular
7	De Angelis C et al	2017	Int J Cardiovasc Imaging.	Carbon dioxide (CO2) angiography as endovascular abdominal aortic aneurysm rep patients with chronic kidney disease (CKD).	an option for pair (EVAR) in

EAR using Carbon Dioxide Injector DSA Angiography

Automated carbon dioxide angiography system

No standardized protocol of automated injection for EVAR

CO2 Angiography in Endovascular Aortic Repair

Agenda

- EVAR and renal function
- CO2 Angiography
- Experience of Vascular Surgery-University of Bologna Italy about Endovascular Aortic Repair with CO2 Angiography
 - EVAR
 - F/BEVAR

Standardization of a Carbon Dioxide Automated System for Endovascular Aortic Aneurysm Repair

Chiara Mascoli, Gianluca Faggioli, Enrico Gallitto, Vincenzo Vento, Rodolfo Pini, Andrea Vacirca, Giuseppe Indelicato, Mauro Gargiulo, and Andrea Stella, Bologna, Italy

Ann Vasc Surg 51, 160-169, 2018

Aim

To report our preliminary experience with a new method of CO2 automated injection in EVAR procedures

Methods

Consecutive patients undergoing EVAR for AAA

 All procedures performed with automated CO₂ injection and controlled with traditional iodinate contrast medium angiography

> Standardization of a Carbon Dioxide Automated System for Endovascular Aortic Aneurysm Repair

Automated CO2 Angiography

Angiodroid System

✓ Pressure : 300 – 500 mmHg

✓ Volume : 80 – 100 mL

Methods

- ✓ ICM was delivered in the suprarenal aorta pigtail catheter using automatic injector
- ✓ CO₂ was delivered through a brand new automatic injector connected to a 10F-sheath positioned in the external iliac artery

Standardization of a Carbon Dioxide Automated System for Endovascular Aortic Aneurysm Repair

- 1. Visualization of the renal arteries
- 2. Visualization of the internal iliac arteries
- 3. Detection of endoleaks
- 4. Safety of CO2 standardized automated injection

Standardization of a Carbon Dioxide Automated System for Endovascular Aortic Aneurysm Repair

✓ August - December 2016

✓ 31 consecutive patients underwent EVAR for AAA

 \checkmark CO₂ automated injection and Iodinate contrast media (ICM)

Standardization of a Carbon Dioxide Automated System for Endovascular Aortic Aneurysm Repair

Results

DEMOGRAPHIC	Ν	%
Age (yrs)	76.8	7.4*
Sex (male)	31	100
HPT	29	93.5
COPD	10	32.2
CAD	6	19.3
Atrial fibrillation	4	12.9
Dyslipidemia	19	61.2
CRF (GFR< 60 mL/min/1.73 m ²)	10	32.2
Dialysis	3	9.6
Smoke	22	70.9
Obesity	4	12.9
Peripheral artery disease	3	9.6
HPT	29	93.5
INTRA-OPERATIVE DATA	Ν	%
Endograft		
Suprarenal fixation	16	51.6
Infrarenal fixation	15	48.3
General anesthesia (n°)	12	387 A
Spinal anestesia (n°)	10	61 3
$\Delta \Delta \Delta$ -sac embolization	14	45.1

Standardization of a Carbon Dioxide Automated System for Endovascular Aortic Aneurysm Repair

Results – CO2 DSA

	Ν	%
Patient	31	
Lowest renal artery (RA) visualization	19	61
Lowest RA not visualised (No RA)	12	39
Hypogastric artery visualization	31	100

Standardization of a Carbon Dioxide Automated System for Endovascular Aortic Aneurysm Repair

Bi/Tri-Dimensional morphological pre-operative characteristics

Bi/Tri-Dimensional morphological pre-operative characteristics

	RA mean	No RA mean	р *
AAA diameter (mm)	55.1 (6.4)	58.7 (10.8)	0.09
AAA Total Volume (mm ³)	160.0 (61.9)	181.5 (107.9)	0.09
AAA Lumen Volume (mm ³)	57.0 (10,2)	95.9 (25.2)	0.03
Distance RA- Aortic Biforcation (mm)	105.5 (13,2)	113.6 (14,1)	0.98
Distance RA - Right Hypogastric artery (mm)	174.0 (22.3)	177.4 (17,6)	0.29
Distance LRA - Left Hypogastric artery (mm)	176.2 (27.9)	178.7 (14.3)	0.11
Distance LRA - 10F sheet apex (mm)	189.5 (22,5)	192.0 (17,8)	0.53

Standardization of a Carbon Dioxide Automated System for Endovascular Aortic Aneurysm Repair

VISUALIZATION OF THE RENAL ARTERIES

Target visceral vessels visualization

Anterior

Anterior

Posterior

Posterior

Target visceral vessels visualization

Anterior

Anterior

Posterior

Posterior

Iodinated contrast media

CO₂ angiography

6

Results – CO2 DSA

	Ν	%
Patient	31	
Hypogastric artery visualization	31	100
Endoleak I/III	0	-
Endoleak II	10	32

Standardization of a Carbon Dioxide Automated System for Endovascular Aortic Aneurysm Repair

CO2 Angiography and Endoleak type II

CO2 Angiography and Endoleak type II

Endoleak type II

ID PATIENT	CO ₂	ICM	CEUS	
5	✓	—	✓	✓ : Detected
9	✓	_	_	- : Undetected
14	✓	_	\checkmark	
16	✓	_	_	
17	✓	✓	\checkmark	
18	✓	_	_	
21	✓	_	\checkmark	
23	✓	✓	\checkmark	
28	✓	_	\checkmark	
29	✓	_	_	
Tot.	10	2	5	Standardization of a Carbon Dioxide Automated System for Endovascular Aortic

Aneurysm Repair

CO2 Angiography and Endoleak type II

Endoleak type II

ID PATIENT	CO ₂	ICM	CEUS	
5	✓	_	✓	✓ : Detected
9	✓	_	_	- : Undetected
14	✓	_	✓	

ELII detection

• CEUS and ICM showed a poor agreement (*Cohen's K:0.35*)

• CEUS and CO₂ showed a substantial agreement (*Cohen's K:0.65*)

28	✓	_	✓	
29	✓	_	_	
Tot.	10	2	5	Standardization of a Carbon Dioxide Automated System for Endovascular Aortic Aneurysm Repair

Carbon dioxide digital subtraction angiography as an option for detection of endoleaks in endovascular abdominal aortic aneurysm repair procedure

Eijun Sueyoshi, MD, Hiroki Nagayama, MD, Ichiro Sakamoto, MD, and Masataka Uetani, MD, Nagasaki, Japan

Objective: The purpose of this study was to evaluate carbon dioxide digital subtraction angiography (CO_2 -DSA) as an option for the detection of endoleaks (ELs) in the endovascular abdominal aortic aneurysm repair (EVAR) procedure.

Methods: Forty patients with abdominal aortic aneurysm who were scheduled to undergo EVAR were enrolled in the study. There were 35 men and five women (mean age, 77.9 years). All patients had both iodinated contrast conventional DSA (C-DSA) and CO₂-DSA immediately after EVAR. The sensitivity and specificity were calculated for the ability of CO₂-DSA to detect ELs. We also correlated with computed tomography findings 6 months after EVAR.

Results: C-DSA showed that 27 of the 40 patients (68%) had 28 ELs (type I, four; type II, 20; type III, three; type IV, one). CO_2 -DSA showed that 16 of the 40 patients (40%) had 17 ELs (type I, four; type II, 10; type III, three; type IV, none). For the prediction of direct ELs (type I and type III) with use of C-DSA as the criterion standard, CO_2 -DSA has a sensitivity of 1.0 and a specificity of 1.0. For the detection of persistent type II ELs (n = 11) with use of computed tomography findings 6 months from EVAR as the criterion standard, CO_2 -DSA has a sensitivity of 0.87 and a specificity of 0.82 and a specificity of 0.64.

Conclusions: CO_2 -DSA is reliable for the detection of direct ELs and persistent type II ELs in EVAR. CO_2 -DSA can be an option to detect ELs in the EVAR procedure. (J Vasc Surg 2015;61:298-303.)

Results - CO2 adverse event

- ✓ Severe hypotension during the procedure: 3 patients
- ✓ **Nausea and vomiting** just before the onset of the hypotension: **2 patients**
- ✓ All the symptoms solved spontaneously

Standardization of a Carbon Dioxide Automated System for Endovascular Aortic Aneurysm Repair

Conclusion

- CO2 DSA
 - ✓ Safe
 - Excellent hypogastric artery visualization
 - ✓ Excellent type II endoleak detection
 - ✓ Renal arteries visualization to be improved

Standardization of a Carbon Dioxide Automated System for Endovascular Aortic Aneurysm Repair

EVAR and CO2 DSA European Multicenter, Prospective Study

Bologna – Italy (PI - Prof. Mauro Gargiulo)

Muenster (St. Franziskus + University Hospital) - Germany

Malmo - Sweden

Athens - Grece

Bordeaux - France

Aalst - Belgium

Ourense - Spain

Patients: 160

• To improve Renal Arteries Visualization

• To standardize a CO₂ EVAR Protocol

• To achieve a zero contrast EVAR

Endpoints

• Primary Endpoint:

Technical success (renal and hypogastric arteries assessment)

Secondary Endpoints:

- Image quality
- Type I-IV Endoleak Detection
- Amount of CO₂ at each deployment stage
- Aneurysm Exclusion without type I-III EL

Endpoints

- Safety Endpoints:
 - Intraoperative adverse events

Severe Hypotension Pain Vomit Diarrhea

- Postoperative adverse events (Creatinine, GFR, pCO₂, TCO₂)

Severe Hypotension Pain Vomit Diarrhea Acute Renal Failure Allergic Reaction

Target visceral vessels visualization

Posterior

Posterior

1 j-AAA

The benefit of combined CO2 automated angiography and fusion imaging in preserving perioperative renal function in fenestrated endografting

Gallitto E et al Submitted to JVS 2019

AIM: To compare results of 3 / 4 FEN performed by:

 \checkmark CO₂ automated angiography + Vessels Navigator

VS

Iodinated contrast angiography + Vessel Navigator

Study design

✓ 2 groups

- Prospective collection: January April 2018 CO2 angiography + Vessels Navigator
- Retrospective collection: June December 2017 Iodinated contrast angiography + Vessels Navigator
- ✓ J/P-AAA or type IV TAAA
- ✓ 3 / 4 FEN endograft

Results - Endograft configuration

6 - 13% 39 - 87%

Results - Procedural data

	CO ₂ angiography Median - IQR	Iodinated contrast media Median IQR	р
Time (min)	290 (135)	347.5 (111)	.07
Fluoroscopy Time (min)	60 (33)	75.5 (57)	.25
Total DAP (mGy/cm ²)	1201117 (571310)	892108.5 (834558)	.27
Iodinated contrast (mL)	41 (26)	138.5 (88)	.001
	CO2 angiography %	Iodinated contrast media %	р
Technical Success	100	100	1
EL I – III *	7	7	1
ELII	27	20	70

* 2 Endoleaks from bridging stent, intraoperatively detected and sealed

Results - TVVs visualization by CO₂

Before introduction	n	%
СТ	15	100
SMA	15	100
RAs	19	63
Graft Introduction	n	%
СТ	15	100
SMA	15	100
RAs	22	73
2 Stent deployed	n	%
СТ	15	100
SMA	15	100
RAs	25	83

Results - @ 30-day

	CO2 angiography %	Iodinated contrast media %	р
Death	0	0	-
SCI	0	0	-
Cardiac Morbidity	0	3	1
Pulmonary Morbidity	7	0	1
Renal function Worsening*	7	23	.45
Hemodialysis	0	0	-
	CO ₂ angiography Median - IQR	Iodinated contrast media Median IQR	р
Creatinine increase (mg/dL)	0.09 (0.03)	0.3 (0.4)	.049
Hospitalization (days)	5 (1)	7.5 (4)	.002

* > 30% of baseline GFR

The benefit of combined CO2 automated angiography and fusion imaging in preserving perioperative renal function in fenestrated endografting

Gallitto E et al Submitted to JVS 2019

Conclusion

- 1. Preliminary experience
- 2. Safe & effective
- 3. TS, procedure time, radiation dose are comparable with standard technique
- 4. Lower iodinated contrast, hospitalization, 30-day renal impairment
- 5. No difference in terms of 6-month reinterventions

